Ca2+ influx-linked protein kinase C activity regulates the β-catenin localization, micromere induction signalling and the oral–aboral axis formation in early sea urchin embryos
نویسندگان
چکیده
Sea urchin embryos initiate cell specifications at the 16-cell stage by forming the mesomeres, macromeres and micromeres according to the relative position of the cells in the animal-vegetal axis. The most vegetal cells, micromeres, autonomously differentiate into skeletons and induce the neighbouring macromere cells to become mesoendoderm in the β-catenin-dependent Wnt8 signalling pathway. Although the underlying molecular mechanism for this progression is largely unknown, we have previously reported that the initial events might be triggered by the Ca2+ influxes through the egg-originated L-type Ca2+ channels distributed asymmetrically along the animal-vegetal axis and through the stretch-dependent Ca2+channels expressed specifically in the micromere at the 4th cleavage. In this communication, we have examined whether one of the earliest Ca2+ targets, protein kinase C (PKC), plays a role in cell specification upstream of β-catenin. To this end, we surveyed the expression pattern of β-catenin in early embryos in the presence or absence of the specific peptide inhibitor of Hemicentrotus pulcherrimus PKC (HpPKC-I). Unlike previous knowledge, we have found that the initial nuclear entrance of β-catenin does not take place in the micromeres, but in the macromeres at the 16-cell stage. Using the HpPKC-I, we have demonstrated further that PKC not only determines cell-specific nucleation of β-catenin, but also regulates a variety of cell specification events in the early sea urchin embryos by modulating the cell adhesion structures, actin dynamics, intracellular Ca2+ signalling, and the expression of key transcription factors.
منابع مشابه
Nuclear β-catenin is required to specify vegetal cell fates in the sea urchin embryo
β-catenin is thought to mediate cell fate specification events by localizing to the nucleus where it modulates gene expression. To ask whether β-catenin is involved in cell fate specification during sea urchin embryogenesis, we analyzed the distribution of nuclear β-catenin in both normal and experimentally manipulated embryos. In unperturbed embryos, β-catenin accumulates in nuclei that includ...
متن کاملT-brain homologue (HpTb) is involved in the archenteron induction signals of micromere descendant cells in the sea urchin embryo.
Signals from micromere descendants play a crucial role in sea urchin development. In this study, we demonstrate that these micromere descendants express HpTb, a T-brain homolog of Hemicentrotus pulcherrimus. HpTb is expressed transiently from the hatched blastula stage through the mesenchyme blastula stage to the gastrula stage. By a combination of embryo microsurgery and antisense morpholino e...
متن کاملNuclear beta-catenin is required to specify vegetal cell fates in the sea urchin embryo.
Beta-catenin is thought to mediate cell fate specification events by localizing to the nucleus where it modulates gene expression. To ask whether beta-catenin is involved in cell fate specification during sea urchin embryogenesis, we analyzed the distribution of nuclear beta-catenin in both normal and experimentally manipulated embryos. In unperturbed embryos, beta-catenin accumulates in nuclei...
متن کاملOral-aboral axis specification in the sea urchin embryo III. Role of mitochondrial redox signaling via H2O2.
In sea urchin embryos, specification of the secondary (oral-aboral) axis occurs via nodal, expression of which is entirely zygotic and localized to prospective oral ectoderm at blastula stage. The initial source of this spatial anisotropy is not known. Previous studies have shown that oral-aboral (OA) polarity correlates with a mitochondrial gradient, and that nodal activity is dependent both o...
متن کاملbeta-Catenin is essential for patterning the maternally specified animal-vegetal axis in the sea urchin embryo.
In sea urchin embryos, the animal-vegetal axis is specified during oogenesis. After fertilization, this axis is patterned to produce five distinct territories by the 60-cell stage. Territorial specification is thought to occur by a signal transduction cascade that is initiated by the large micromeres located at the vegetal pole. The molecular mechanisms that mediate the specification events alo...
متن کامل